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Featured Application: This paper presents a comparison study with well-controlled data to eval-
uate two new deep learning methods and their relationships and differences with traditional
methods. We implemented four widely accepted limit equilibrium analysis methods and com-
pared their implementations and results with the newly proposed deep learning methods. This
will lend engineers a clear reference regarding how deep learning works in comparison with tra-
ditional methods. With this paper, readers can easily see the potential and technical advantages
of the new methods. This presents a good example to show the comparison between traditional
physics-based approaches and the data-driven approaches and demonstrate how data-driven ap-
proaches can change or complement the traditional engineering practices. The work will help
bridge the gap between traditional engineering analysis of geosystems and advanced engineer-
ing informatics and explore “big data” solutions for many similar engineering applications (e.g.,
with mechanical or stability analysis).

Abstract: This paper presents a comparison study between methods of deep learning as a new
category of slope stability analysis, built upon the recent advances in artificial intelligence and
conventional limit equilibrium analysis methods. For this purpose, computer code was developed to
calculate the factor of safety (FS) using four limit equilibrium methods: Bishop’s simplified method,
the Fellenius method, Janbu’s simplified method, and Janbu’s corrected method. The code was
verified against Slide2 in RocScience. Subsequently, the average FS values were used to approximate
the “true” FS of the slopes for labeling the images for deep learning. Using this code, a comprehensive
dataset of slope images with wide ranges of geometries and soil properties was created. The average
FS values were used to label the images for implementing two deep learning models: a multiclass
classification and a regression model. After training, the deep learning models were used to predict
the FS of an independent set of slope images. Finally, the performance of the models was compared to
that of the conventional methods. This study found that deep learning methods can reach accuracies
as high as 99.71% while improving computational efficiency by more than 18 times compared with
conventional methods.

Keywords: convolutional neural networks; slope stability; multiclass classification; regression; deep
learning; landslides; limit equilibrium methods

1. Introduction

Slope stability analysis is critical to the prevention and hazard mitigation of landslides.
Especially in the present day, urbanization and population growth have been necessitating
the build-up of terraces and corridors to make room for buildings and infrastructures,
leading to more slope stability considerations in the built environment [1,2]. This raises the
demand for the understanding, analysis, and prevention of landslides. The most common
force-based methods for slope stability analysis are limit equilibrium methods (LEMs) [3],
strength reduction methods (SRMs) [4], and limit analysis methods (LAMs).
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LEMs were explored extensively in the early days to study slopes with hand-performed
computations due to the lack of computing power. Despite the long history, these methods
evolved with the availability of computers as well. Computers enabled LEMs to consider
the internal forces, pore pressure, and multiple layers of soils. In addition, the simplicity of
the underlying theories contributed to the popularity and widespread use of these methods
among engineers [5,6]. However, LEMs are statically indeterminate problems, and the
use of these methods requires assumptions of the internal forces that compromise their
accuracy [7].

SRMs are the second category of methods that are commonly applied through the
finite element, finite difference, and discrete element methods. These methods provide ap-
proximations to the exact solution of the governing equations of slope mechanics; therefore,
they are more complicated than LEMs. Compared with LEMs, SRMs are advantageous in
that they can consider strains [8]. Nonetheless, SRMs are relatively time-consuming, and
their accuracy heavily relies on the accuracy of the considered geotechnical parameters [9].

Another group of approaches is LAMs, which make use of lower-bound and upper-
bound theorems of plasticity [10]. While LEMs consider force and moment equilibrium
along a specified slip surface, LAMs are rigorous. The reason for this is that, for the lower-
bound, the stress field is in equilibrium with imposed loads at boundaries, while for the
upper-bound, the velocity field solution is compatible with the imposed velocities. Despite
the rigorousness, LAMs are not as popular as LEMs and SRMs due to the difficulties in
constructing proper stress and velocity fields and obtaining optimal solutions. Additionally,
the inclusion of pore water pressures, inhomogeneous soil profiles, and irregular slope
geometries increase the complexity of LAMs. This can further complicate the manual
construction of the stress and velocity fields, making LAMs impractical in most cases [11].

A more recent approach to slope stability is displacement-based analysis. This group
of methods is focused on simulating the large movements and the post-failure behavior
of slopes [12]. In many cases, the catastrophic damage caused by the deformations due
to a landslide is more crucial than calculating the FS [13]. One of the most common
methods in displacement-based analysis is the material point method (MPM) [14]. This
method provides information for the internal development of shearing surfaces and the
post-failure runout process [15]. The MPM has been used in numerous research projects
and case studies. For example, Fern, et al. [16] used centrifuge tests to assess the effect of
subsoil stiffness on the failure mechanism of dykes. Conte, et al. [17] utilized the MPM to
investigate the runout process of the Maierato landslide.

Despite the clear underlying theories, the above categories of physics-based methods
require assumptions to deal with the spatial variability of earth materials and their complex
geotechnical behavior [18]. Moreover, the accurate implementation of these models to rep-
resent real-world conditions is time-consuming, computationally expensive, and requires a
high level of expertise. Consequently, these models are either complex and impractical or
over-simplified and inaccurate for field engineers when analyzing real-world problems.
Additionally, these conventional methods are unable to take advantage of the large volumes
of available data (“big data”), especially image and video data, and recent advancements
in artificial intelligence.

Recently, a successor of artificial neural networks (ANNs), called convolutional neural
networks (CNNs), gained popularity as a successful deep learning network. CNNs at-
tracted an increasing amount of attention following their success in classifying 1.2 million
high-resolution images into 1000 different categories [19]. These networks can significantly
reduce model parameters and automatically extract data (image) features, and hence they
generated remarkable improvements in learning outcomes [20].

Despite the success of CNNs in computer vision, they have only been explored in a
few civil engineering applications [21]. Specifically, deep learning with CNNs has been
used in structural health monitoring and vibration-based structural damage
detection [22–26]. In geotechnical engineering, CNNs enabled researchers to use raw
data and field records for assessing liquefaction potential [27], monitoring and predicting



Appl. Sci. 2021, 11, 6060 3 of 20

landslide displacement [28,29], identifying the source location of microseismic events in
underground mines [30], predicting the spatial correlation coefficients from cone penetra-
tion test data [31], and analyzing landslide susceptibility [32,33]. Despite this progress, the
application of CNNs in classical geosystems such as slope stability analysis is still rare.
As far as we know, the earliest and the only attempt is the authors’ effort of using a CNN
multiclass classifier for obtaining the FS of slopes, which was validated against Bishop’s
simplified method [34].

In this study, deep learning models are combined with physics-based models of
slope stability to obtain new models for slope stability analysis. In particular, a multiclass
classification model and a regression model were employed to automatically predict the
FS of slope images. The performance of both models was evaluated against four widely
adopted LEMs in terms of accuracy and computing efficiency: the ordinary method of
slices (OMS), Bishop’s simplified method (BSM), Janbu’s simplified method (JSM), and
Janbu’s corrected method (JCM). The rest of the paper is organized as follows. Section 2
presents a brief introduction to the basics of deep learning with CNNs, followed by the
theories of the proposed deep learning models. Next, Section 3 describes a procedure
proposed for generating slope image data with different geometries and soil properties, as
well as the labeling and pretreatment of the slope image data. The four LEMs employed
in this study, including their theories and implementations, are detailed in Section 4. In
Section 5, the results for training, validation, and testing are presented and analyzed, and
conclusions are reached based on them.

2. Models
2.1. Overview of the Research Method

This subsection presents an overview of the research method and associated efforts.
After going through the basic concepts and theories of deep learning with CNNs, the first
step was to develop computer code for generating a dataset of artificial slope images with
various geometries and soil properties. This code was then utilized to analyze the FSs
of the images within the dataset using four LEMs, including the OMS, BSM, JSM, and
JCM. The accuracy of the computer code was validated against Slide2 in RocScience. In
the next step, the slope images were labeled and saved into lightning memory-mapped
database (LMDB) format using two labeling procedures for the classification and regression
models in deep learning. For the classification model, the slope images were grouped
into nine classes based on the average values of their FSs. For the regression model, the
images were labeled with the FS values. Considering that the LMDB format only supports
integer values, the FSs of the slopes were multiplied by 1000, rounded down to the nearest
integer and then used as the label. Next, the hyperparameters for the classification and
regression models were defined in the solver. The solvers and datasets were then used
to train the deep learning models. Subsequently, the trained models were employed to
predict the FS values of an independent set of images to evaluate the performance of the
newly developed methods. For this purpose, the FS predictions from the deep learning
methods were compared against the FSs obtained by the previously mentioned LEMs
regarding their accuracy and computing time. Finally, the results of these comparisons
were analyzed, and conclusions were drawn based on them. In the following sections,
more detailed descriptions will be provided for the essential components of the study.

2.2. Convolutional Neural Networks (CNNs)

CNNs were first proposed by LeCun [35], and they have been used frequently in
computer vision applications ever since. CNNs usually consist of a series of convolutional
layers, pooling layers, dropout layers, and fully connected layers. In convolutional layers,
the model applies kernels to the image to detect features and generate various feature
maps. The pooling layers introduce shift-invariance by reducing the resolution of the fea-
ture maps [36]. The dropout layers prevent overfitting, and batch normalization prevents
internal covariate shift and speeds up training [37]. In the end, fully connected layers
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produce the final output [38,39]. The Convolutional Architecture for Fast Feature Embed-
ding (Caffe), developed by the Berkeley Vision and Learning Center (BVLC), was used as
the deep learning framework in this study [40], considering that Caffe is a popular deep
learning library that is fast, modular, and includes advanced deep learning techniques [41].
Two supervised learning models were proposed for conducting deep learning in this study:
a multiclass classification model and a regression model. Both models were employed
to study the slope image data to associate the features or images with their labels. In the
following subsections, these two models are briefly discussed to show how deep learning
can be used to obtain the FS values of slopes.

2.2.1. Multiclass Classification

Image classification used to be a challenging task involving two stages: using feature
descriptors to extract handcrafted features and then feeding them to a trainable network.
The problem with this approach was that it was heavily dependent on the first stage, which
was a complicated task [35]. However, the availability of GPUs, better algorithms, and
larger datasets helped address this problem and fueled the popularity of CNNs [42].

The main obstacle in using a multiclass classification model in this study was that
the measure of the stability of slopes (i.e., the FS) was a continuous variable, while the
classification model was inherently suitable for discrete variables. To address this issue, the
FS values were grouped into nine categories based on the ranges of their FS values. The
categories of FS values in Table 1. were adopted so that the classification model could reach
accuracy to one decimal place. Aside from that, each range was associated with a unique
label that was utilized in the multiclass class. The details of calculating the FS values of
these slope images are discussed in the following sections.

Table 1. Categories of FS values and their associated labels for multiclass classification.

Category Range of FS Label
First Less than 0.8 0

Second 0.8–0.9 1
Third 0.9–1.0 2

Fourth 1.0–1.1 3
Fifth 1.1–1.2 4
Sixth 1.2–1.3 5

Seventh 1.3–1.4 6
Eighth 1.4–1.5 7
Ninth Greater than 1.5 8

To obtain a general understanding, let us assume there are k predefined classes in
the data. Then, the goal of the multiclass classification model is to determine the input, x,
belongs to which of the k categories. To achieve this goal, the deep learning model will
approach a function f , which can be defined by its weights w to estimate the output y
such that y = f ( x|w). In this study, the input fed to the network was an image or images
in the form of an array or arrays of numbers representing pixel values of the image or
images. The output was a vector of k numbers, in which all elements were equal to zero
except the one that was equal to the label. Before calculating the output, the Softmax layer
computed the probability of the input image belonging to every class. The Softmax layer
takes the output of the last linear layer zi and transforms it into the probabilities of the
image belonging to each category by taking the exponents of each input and normalizing
them over the sum of these probabilities:

pi =
ezi

∑k
j=1 ezj

(1)

where pi is the probability that an image belongs to the ith category.
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In deep learning, the goal is to minimize the error or loss. The loss function is a
measure of how well the model fits the data. Cross-entropy is usually used to construct the
loss function for the multiclass classification:

J(w) = −
k

∑
i=1

[yi ln(pi)]. (2)

Deep learning involves two stages: training and testing. In both stages, predictions are
the goal, namely by using a CNN to predict the FS of a slope based on its image data. Before
predictions, these CNNs must be trained on a dataset of labeled slope images. In training,
the deep learning model is improved to minimize the loss function in the optimization
process to find the best weights w for the dataset.

The CaffeNet architecture developed by the Berkeley Vision group was adopted for
the classification model of this study [19]. Figure 1 illustrates the architecture of this
model. This classifier is a one-GPU reproduction of AlexNet with minor improvements,
including the removal of data augmentation and moving of the pooling layer in front of
the normalization layer. Data augmentation is a technique that increases the amount of
available data by synthetically modifying the existing data through procedures such as
cropping, padding, and flipping. CaffeNet is more computationally efficient due to the size
reduction obtained from the pooling layer [43].
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2.2.2. Regression

Aside from classification, deep learning models are also employed to solve regression
problems. Regression models are widely adopted for problems that involve the prediction
of continuous values. Classification and regression models are quite similar, except for
the format of their output variables and their loss layers. While the output variable in
classification is a discrete value (categories), the output of regression can take any value in
a continuous domain [44]. Moreover, the Softmax layer is commonly replaced with a fully
connected regression layer with linear or a Sigmoid activation [45].

In regression, the goal is to train a network that can take the input x and predict the
value of y as the output. In regression models, the network is trained on a labeled dataset
and is required to produce a function f : Rn → R . The procedure of training a regression
model is quite similar to that of a classification model in that both of them aim to minimize
the loss. As a result, the architecture of the regression model was almost identical to that of
the classification model shown in Figure 1, except that the Softmax loss layer was replaced
by a Euclidean loss layer. The Euclidean distance measures the distance between two
real-valued vectors. Once this loss layer takes an InnerProduct layer as the input, it forms
a linear least squares regression problem. The computed Euclidean loss was defined as

E =
1

2n

N

∑
n=1
‖ ŷn − yn ‖2

2 (3)
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where yn is the true FS and ŷn is the prediction of the FS for the input data [46]. The loss
decreases when the Euclidean distance between the predictions and targets decreases,
enabling the predictions made with the regression model to approach the true FS values of
the slope images.

3. Data

The computer code was developed to produce a set of slope image data for the
intended comparison study. The slope images within the dataset were different from each
other in two aspects: the geometry and soil properties. In the following subsections, first,
the process of producing different geometries will be concisely explained. Second, the
procedure of incorporating the soil properties into the slope images will be described.
Third, the validation procedure of the developed computer code will be presented. Finally,
data pretreatment and labeling will be discussed.

3.1. Geometry

The application of a CNN in slope stability analysis is still in the preliminary stages.
Therefore, this study adopted simple geometries to focus on understanding the concept
and basics of such deep learning-based methods for slope stability analysis. As is shown in
Figure 2, the slope images were produced on a 50 × 50 canvas. To account for different
geometries, the x and y coordinates of the four specified points in this figure were produced
using random numbers.
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The equations for producing the coordinates of these four points are listed in
Table 2, where the random variable λ is a uniformly distributed value between 0 and
1. In addition to the equation, some restrictions were adopted to obtain slope geometries
that were significantly different and could be conveniently analyzed with LEMs. First, the
y coordinates of Point 1 and Point 2 were the same, meaning that the bottom of the slope
was always horizontal. Second, the crown of the slope was also horizontal. Third, the
slip circles could not extend beyond the dimensions of the image data (50 × 50). Fourth,
the slip circles with radii of less than one were neglected, since they were susceptible to
shallow failure. Fifth, in the calculation of the FS, it was assumed that the center of the
slip circle (xc, yc) had the following attributes: 0 < xc < x3 and y3 < yc < y3 + 15. These
boundaries were then divided to form 30 grids in each direction, resulting in 900 slip circle
centers for each image. Next, for each of these centers, 30 potential radii were tested to find
the slip circle that could yield the minimum FS.
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Table 2. Coordinates of the four points used to create the geometry of the slope image data.

Parameters Descriptions Formulations

(x1, y1) Coordinates of Point 1 (0, 15 + 10λ)
(x2, y2) Coordinates of Point 2 (15 + 10λ, y1)
(x3, y3) Coordinates of Point 3 (x2 + λ(29− x2), y2 + 8 + λ(35− y2))
(x4, y4) Coordinates of Point 4 (50, y3)

N Number of slices 40

3.2. Soil Properties

The stability of the slopes is also primarily determined by the soil properties. Therefore,
the soil properties were also considered in both the deep learning methods and LEMs in
the comparison study. For this purpose, the soil properties, including the cohesion, friction
angle, and unit weight, were selected based on the typical values of these parameters to
reflect their variations in the real world [47,48]. Cohesionless soils were not considered
in this study due to the shape and depth of their slip surfaces. The critical slip surface in
cohesionless soils is a shallow plane parallel to the surface of the slope. However, the LEMs
adopted in this study employ a circular slip surface to search for the circle that yields the
minimum FS. The ranges of the adopted values for these parameters are listed in Table 3.
For each image, computer code generated three random numbers within the given ranges
with a uniform distribution to cover a wide range of soils. To incorporate these properties
in the slope images, all of these values were normalized to values between 0 and 1. In the
real slope images, the material properties were related to the information embedded in the
image data; pixel values in different channels indicated the properties of the soil. In this
pioneering study, this relationship was represented using a simple procedure. Each of the
soil properties was assigned to one of the RGB channels of the image: red (R), green (G), or
blue (B). The obtained color was then used to paint the slope image. In this way, the soil
properties were carried by the image data in addition to the geometry.

Table 3. Range of soil properties used in this study.

Soil Properties Range Unit Color

Cohesion (c′) 10–100 kPa Red
Friction angle (ϕ′) 15–35 Degrees Blue

Unit weight (γ) 17–22 kN/m3 Green

3.3. Validation of the Computer Code for Data Generation

New code was developed for the FS calculations in this study because existing com-
puter programs cannot be easily coupled with deep learning or its associated data treat-
ments for the purpose of comparing deep learning against LEMs. This newly developed
code was validated against a widely adopted commercial LEM software package, Roc-
Science, before its use. A trial dataset of five images per category was randomly chosen
to evaluate the accuracy of the developed code. These slopes were then simulated using
Slide2 in RocScience. Figure 3 compares the FS predictions obtained with RocScience and
those obtained with the new computer code. In this figure, the lines represent the FS values
obtained in this study, while the markers represent the FSs calculated with RocScience.
As can be seen, the FS values calculated with this code almost coincided with the results
obtained with RocScience for the four LEMs.
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Figure 3. Comparison of FSs obtained with RocScience with the computer code.

3.4. Data Pretreatments

Several preprocessing techniques were applied to the slope images to improve the
deep learning results [49,50]. In the first step, the histogram equalization technique was
used to enhance the contrast of every image by decreasing the number of gray levels.
X = {X(i, j)} is used to represent an image, in which X(i, j) is the gray level of the pixel.
Given that nk is the number of pixels with the Xk gray level, the probability density of Xk
can be defined as

p(Xk) =
nk
N

, k = 0, 1, . . . , L− 1, (4)

where N is the total number of pixels and the image density is digitized into L levels.
Then, the cumulative distribution can be formulated as

CDF(Xk) =
k

∑
i=0

p(Xk). (5)

Accordingly, the transform function of histogram equalization was calculated as

f (Xk) = X0 + (XL−1 − X0)CDF(Xk). (6)

After histogram equalization, all slope images were resized to 227 × 227 pixels and
then saved in lightning memory-mapped database (LMDB) format. Finally, the mean
image was calculated and subtracted from each input image so that each feature has a
similar range.

4. Limit Equilibrium Methods (LEMs)

LEMs were among the earliest methods in the analysis of slope stability. These
methods are popular due to their simplicity and broad acceptance among practicing
engineers [11]. There are multiple different LEMs, and the main differences between
them are the various assumptions regarding the shape of the slip surface, interslice forces,
and equilibrium considerations of the sliding mass [8,51]. Researchers have extensively
investigated the accuracy of LEMs. The results of the LEMs were compared against methods
with higher accuracy, such as finite element methods [52] with shear strength reduction
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techniques [53,54]. The results from these comparisons indicated that the average FS
calculated with LEMs was in good agreement with the more rigorous methods, especially
for slopes with a homogenous soil layer.

However, there are some drawbacks inherent to the LEMs. One of these drawbacks
is the assumption of a ductile stress–strain behavior due to the lack of information about
the magnitude and variations of strains within the slope. In fact, it may not be correct to
presume that the peak strength is mobilized simultaneously along the whole slip surface.
Additionally, due to the fact that the number of equilibrium equations is less than the
number of unknowns, LEMs are bound to use simplifying assumptions to render the
problem determinate [7]. In the following subsections, considering this is a comparison
study involving LEMs, the four LEMs selected in this study, together with their basic
theories and advantages and disadvantages, are briefly discussed. The average of the FS
values obtained by these four LEMs was adopted as the target value for labeling the image
data. In theory, if LEMs can approximately calculate the FS in some way and the number
of LEMs is big enough, we can assume that the average of the FS values calculated with
the LEMs can approach the true FS of the slope in the image.

4.1. Bishop’s Simplified Method (BSM)

This method considers the horizontal interslice forces and neglects the shear stresses
between them [55]. The normal force acting at the center of the base of each slice is derived
by adding the forces in the vertical direction. In other words, this method only ensures
the force equilibrium in the vertical direction for each slice and derives the FS from the
summation of moments about the center of the slip circle. It is important to note that
because the resultant vector of the pore pressure and effective normal force passes through
the center of the slip circle, these two forces do not affect the overall moment equilibrium.
As a result, this method is not suitable for noncircular surfaces [56]. Although BSM does
not consider the interslice shear stress, several studies have established that the FS was
expected to differ by less than 5% from more rigorous methods [57,58]. Considering the
equilibrium in the y direction, the FS in BSM is represented by the sum of the resisting
forces divided by the sum of the driving forces:

FS =
∑
{
(c′∆x + (w− u∆x)tanϕ′) 1

Mα

}
∑ wsinα

, (7)

where ∆x is the width of the slice, w is the weight of each slice, α is the angle between the
potential failure arc and the horizontal forces at the midpoint of the slice, u is the pore
pressure, and Mα is calculated as

Mα = cosα +
sinαtanϕ′

FS
. (8)

4.2. Ordinary Method of Slices (OMS or Fellenius)

As one of the earliest LEMs, the OMS does not involve an iterative process for calculat-
ing the FS. This makes the OMS convenient for hand calculations. This method calculates
the FS by considering the summation of moments about the slip surface’s center. The major
drawback of the OMS is that it assumes the resultant interslice forces are parallel to the
base of the slice. This assumption results in the exclusion of the interslice forces and thus
affects the accuracy of this method [57,59]. The equation for the FS in this method is

FS =
∑(c′l + N′tanϕ′ )

∑ wsinα
, (9)

where l is the slice base length and N′ can be calculated as

N′ = (wcosα− ul). (10)
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There are concerns regarding the accuracy of the OMS. Whitman and Bailey [60]
claimed that this method could have errors of up to 60%. The accuracy of the OMS was
investigated for the simple geometries and homogenous soils in this study. The OMS
and BSM were used to calculate the FS values of 500 random slopes. Figure 4a shows a
comparison between the FSs obtained by the OMS and BSM. This subplot illustrates good
agreement between the two methods. In Figure 4b, the relative difference between the two
methods is presented. The relative difference DR is defined as

DR =
FSBSM − FSOMS

FSBSM
× 100% (11)
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relative differences.

Figure 4b illustrates that, although the FS predictions of BSM were higher than the
OMS in most cases, the discrepancy between the results of the two methods was not
significant. The highest relative difference between the two methods was 12.19%, and the
mean absolute error of the OMS with respect to the BSM was 0.0653. This comparison of
FS results obtained with the OMS and BSM confirmed the appropriateness of using the
OMS for such slopes.

4.3. Janbu’s Simplified Method (JSM)

Janbu developed some of the most popular LEMs for slope stability analysis [61–63],
from which Janbu’s simplified and Janbu’s corrected methods were employed in this study.
While JSM was originally developed to handle composite slip surfaces, it is also capable of
handling circular slip surfaces. Similar to BSM, JSM is an iterative method that considers
the interslice normal forces and neglects the shear forces between the slices. JSM is a force
equilibrium method, meaning that it satisfies the horizontal and vertical force equilibrium
requirements but does not ensure moment equilibrium. This method calculates the FS
as follows:

FS =
∑
{
(∆xc′ + (w− u) tan ϕ′ ) 1

nα

}
∑ wtanα

, (12)

where

nα = cos2α

(
1 + tanα

tanϕ′

FS

)
. (13)
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4.4. Janbu’s Corrected Method (JCM)

Janbu proposed a correction factor f0 to consider the effect of interslice shear forces
that were neglected in JSM. JCM uses the FS calculated via JSM (i.e., FSJSM) and applies
this correction factor to it to obtain a new FS (i.e., FSJCM):

FSJCM = FSJSM × f0 (14)

Janbu’s correction factor is based on a series of curves for different soils. These curves
were obtained by comparing the FS values of Janbu’s generalized method [64] and JSM.
The correction factor was later described based on these curves as

f0 = 1.0 + b1

[
d
L
− 1.4

(
d
L

)2
]

, (15)

where d and L are the depth and length of the slip surface, respectively (Figure 5), and b1
is a parameter that depends on the soil type and can be obtained with Equation (16). It is
worthwhile to mention that the correction factor is always greater than one. As a result, the
FS calculated with JCM is 5–12% greater than that with JSM [57]:

b1 =


for c only soils = 0.69
for ϕ only soils = 0.31
for c and ϕ soils = 0.5

(16)
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5. Results and Discussions
5.1. Training

A dataset consisting of 37,500 slope images for training and 7500 for cross-validation
was used to train the deep learning models. Transfer learning was adopted as the training
method. In transfer learning, we used a CNN that was pretrained on a general large
(source) dataset and repurposed the learned features for training on a target dataset. This
improves learning in a new task through the transfer of knowledge from the previous
task [65,66]. To achieve this, the BAIR Reference CaffeNet model that was trained on the
ImageNet dataset with 1000 classes was utilized as the source dataset. Using the weights
of this pretrained model as the starting point of our training helped speed up the training
and significantly improved the performance of the models.

AdaDelta was adopted as the optimizer for the regression and classification models
due to its data modalities, different model architecture choices, and robustness to noisy
gradient information [67]. Additionally, both models used the same set of hyperparameters
that had yielded the best results: a “fixed” learning rate policy with a base learning rate of
0.05 and a maximum iteration of 40,000. Seventy-five test iterations were performed at an
interval of 500 iterations. Other adopted hyperparameters included a momentum of 0.9, a
snapshot of 5000, and a weight decay of 0.0005. Figure 6 demonstrates the training process
for the classification model with these parameters. In this figure, the downward trend of
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the loss indicates that the model was learning from the data. The maximum accuracy and
loss obtained by this model were 82% and 0.2, respectively. Additionally, the regression
model achieved a Euclidean loss of 2175 at the end of the training.
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5.2. Testing

As was mentioned before, the goal of this study was to use both trained models
to predict the FSs of slopes based on their images. To provide an unbiased assessment
of the prediction performance of the models, a comprehensive testing dataset that was
independent of the training images was needed. In addition, the testing dataset should
have included cases from all ranges of the FS. Accordingly, more than 30,000 cases were
generated using the computer code. Table 1 was then used to distribute these images into
nine classes based on their FSs. One thousand slope images per category were randomly
selected to form the testing dataset. The result was a dataset of 9000 slope images, for which
the true FS and the range or class that it belonged to was known. The trained classification
and regression models were then employed to predict the range and the value of the true
FS, respectively. It is important to note that the inputs in the testing phase of the study
were the unlabeled slope image data. Therefore, the deep learning models did not get any
information regarding the true FSs of the slopes in the testing data. In the following, the
prediction accuracy and computational efficiency of the deep learning-based methods and
LEMs are compared against one another.

Figure 7 compares the predictions made with the trained models against the true FSs
obtained with the computer code. The x-axes in both subplots represent the true FS values
obtained with the computer code, and the y-axes are the FS values predicted with the deep
learning models. In Figure 7a, both axes are divided into nine regions, corresponding to the
number of classes in the classification model. In this subplot, each cell is color-coded based
on the number of images that it represents. These numbers are also shown on each cell. The
cells on the diagonal line indicate slopes in which the predicted and true FSs are identical.
These cells are colored light green, which suggests a high number of images according to
the colormap of this plot. The dark green cells represent images for which the distance
between the predicted and true FS values was 0.1 (one category). The red cells represent FS
predictions that were off by more than 0.1 (more than one category). The blank cells imply
that there were no cases in these cells. Further analysis of Figure 7a shows that the testing
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accuracy of the classification model was 80.9%, which was obtained by calculating the sum
of the values on the diagonal line (7283) and dividing it by the total number of cases (9000).
Additionally, the mean absolute error of prediction was 0.0195. The low gap between the
training (82%) and testing accuracy (80.9%) indicates the absence of overfitting.
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Figure 7. Results of testing for (a) the classification model and (b) the regression model.

In Figure 7b, each dot represents one image in the testing dataset. The prediction
accuracy of the regression model can be interpreted as the distance between the dots in
this plot and the diagonal line. Thus, the closer a dot is to the diagonal line (y = x), the
more accurate its predicted FS value is. As can be seen in this plot, while in some cases the
predicted FS was far from the true value, the number of such cases was small compared
with the total number of cases (9000). The mean absolute error for the regression model
was 0.0265.

The accuracy of classification was 80.9%, which does not appear to be high from a deep
learning perspective. However, the accuracy could be much higher from the perspective of
slope stability analysis. The reason for this is that any incorrect classification is counted as
“bad” in deep learning. However, in slope stability analysis, the effectiveness of the results
can also be measured by the distance between the predicted classification, (i.e., the FS) and
the real classification; that is, predictions that are not far from the real classification (i.e., an
FS value that is 0.1 above or below the true FS) is not “accurate” in deep learning but can
still be acceptable in slope stability analysis. A reinterpretation of the results in Figure 7a
revealed that more than 98% of the incorrectly predicted cases in deep learning would be
acceptable in slope stability analysis.

The large number of cases that were one category off was potentially caused by the
defined ranges. To gain more insights, we divided a continuous variable (FS) into nine
categories to utilize a classification model. While this is a necessary step to prepare the
dataset for the classification model, it may also lead to the loss of information. Once
the labels are created, this loss of information can affect the classification model in the
following ways. First, the model is unable to reflect the difference between the FS values of
images that belong to the same category. Second, the model is incapable of distinguishing
between images that have close FS values but belong to two nearby categories. We can
reduce this loss of information by choosing smaller ranges, leading to a higher number
of categories. The regression model here can be viewed as a classification model with an
infinite number of categories or classes. The effect of this loss of information can be better
quantified with statistical analysis. Figure 8 is presented to investigate the magnitude of
errors in the predictions. In these semi-logarithmic plots, the x-axis denotes the error in
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the predictions of the models, and the y-axis displays the number of slope images with
a particular error. As is shown, if the predictions that were off by one category were
considered acceptable, the accuracy of the regression and classification models would
be 99.69% and 99.71%, respectively. Additionally, in the deep learning perspective, the
regression model outperformed the classification model and decreased the number of
predictions that were off by one category from 1691 to 176. This increased the deep learning
accuracy from 80.92% in the classification model to 97.73% in the regression model. This
leap in performance confirms that the loss of information associated with grouping FS
values was responsible for a large portion of the errors in the classification model.
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Figure 8. Number of images versus error in FS predictions for (a) the classification model and (b) the regression model.

To further evaluate the effect of this loss of information, 500 random slope images
were selected from the testing data. In Figure 9, the predicted range of FS values obtained
by the classification model is compared with the true FS values. In this figure, the vertical
axis is the true FS value of each point or image, and the horizontal axis is the predicted FS
value. It is important to note that the classification model predicts the range of FSs, and the
horizontal placement of points within a single range is for plotting purposes. The points
that are located within the green boxes represent cases in which the predicted FS value was
correct. By contrast, the points in red boxes belong to incorrectly predicted ranges. This
figure shows that for the majority of the incorrectly predicted cases, the true FS value was
quite close to the boundaries of the FS ranges defined for the classification model. This
confirms that the loss of information made it difficult for the classification model to predict
the range of FS values when the true FS was close to the cell boundaries.
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Figure 10 plots the FS values obtained by different analysis methods for a subset of
the testing data. This figure contains 226 randomly selected slope images. The slopes were
sorted based on their true FSs. A solid line was then used to represent the true FS values of
the slopes. There are five types of markers in this figure: four of them belong to the four
LEMs implemented in this study, and one is for the predictions of the regression model.
The results are demonstrated in two sections for plotting purposes. The main plot shows
200 images for FS values up to 1.8, and the subplot at the upper left corner shows 26 slopes
with higher FSs. The comparison indicates that all of the predicted FSs were quite close to
the true FSs calculated as the average FS of the four LEMs. Further analysis of this plot
shows that the BSM underestimated the FSs for most slopes, while JCM and JSM tended to
overestimate them. Despite this difference, the predictions of the regression model, true
FSs, and the OMS results were similar to one another. This plot also shows that, for the
majority of the slopes, the predictions of the deep learning models were within the highest
and lowest FSs obtained with the four LEMs and were more accurate than all of them.
Another important observation from this figure is the ability of the regression model to
distinguish between images within the first and ninth categories. While there was only one
class for each of these wide ranges in the classification model, the regression model could
estimate the FS values of these images instead of categorizing them as “lower than 0.8”
(first category) or “higher than 1.5” (ninth category).
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The other major criteria adopted in this comparison study were the computational
demands and time-efficiency. Using LEMs to evaluate slope stability is a time-consuming
process. This process is comprised of two main stages: manual construction of the model
and using it to evaluate slope stability. By contrast, the ability of deep learning to quickly
analyze large amounts of data is one of the main reasons for its popularity and widespread
use. In this study, the amount of time needed for the LEMs to calculate the FS values
(the second stage) was compared with that of the two proposed deep learning models.
It is noted that the computing times for the classification and regression models were
almost the same, so the computing time of the regression model is not shown in the plot.
Figure 11 summarizes a comparison of the computing times needed for calculating the
FS with the LEMs and that with the classification model. In this figure, each line with
markers represents the deep learning model or a traditional LEM for calculating the FS.
This figure shows that the deep learning model outperformed the traditional LEMs in
terms of computation time. In addition, the amount of time needed for the LEMs increased
approximately linearly as the number of cases increased. For example, the time needed to
calculate the FSs of 200 slopes was almost twice the time needed for 100 slopes. However,
deep learning methods behave differently. Every time a deep learning model is deployed,
it first runs several background processes and then starts predicting FS values. Therefore,
as the number of images increased, this initial cost was distributed over more images. That
is why the deep learning model outperformed the LEMs more and more as the number
of images in the testing dataset increased. To emphasize this boost in performance, the
elapsed time for the classification model (blue line) and JCM (green line) were also labeled.
For example, it took 15.1 s for the classification model to predict the FS for 200 slopes,
while obtaining the FS via JCM for the same number of images took 1315 s. This means
that deep learning methods are over 18 times more efficient than JCM. Aside from that,
when analyzing 200 cases, the improved computational efficiency of the deep learning
methods would be more notable if the time needed for manual procedures prior to running
the model (the first stage) were considered for traditional LEMs. The traditional methods
require a great deal of time to manually prepare the input, construct the model, and set up
the geometry. However, deep learning methods can analyze raw image data and do not
require any manual data preprocessing work once they are trained.
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6. Conclusions

This paper introduces deep learning-based methods as a new category of methods to
evaluate slope stability. To achieve this, a multiclass classification model and a regression
model in deep learning were employed to develop two slope stability analysis methods in
this category. The performance of these methods was assessed in different aspects. The new
methods exhibited promising performance in terms of both accuracy and computational
efficiency. For accuracy, the classification model showed an accuracy of 82% in training
and 80.9% for testing in a deep learning perspective. Further analysis revealed that, if
the predictions that were off by one category were also considered acceptable, the testing
accuracy would get as high as 99.71%. This indicated that the loss of information caused
by using categories to represent a continuous variable (FS) was the reason for the lower
accuracy of the classification model. By contrast, the use of the regression model prevented
this loss of information and increased the deep learning accuracy to 97.73%. Aside from
high accuracy, the ability of CNNs to analyze raw image data obviates the need for the
time-consuming and error-prone procedures of constructing conventional models, which
are required for LEMs and SRMs. Using raw data directly also means that we can avoid the
simplifying assumptions associated with conventional methods, which could jeopardize
the accuracy of stability analysis. Another advantage of using CNNs is their efficiency;
much shorter computing times, compared with conventional methods, are needed with
the same computing resources. The results showed that, even without considering the time
needed for manual construction of the LEMs, the proposed CNNs were 18 times faster than
JCM when analyzing 200 cases. It is also noteworthy that this difference in the computing
time would even increase as the size of the data increased.

This study can pave the way toward adopting deep learning to analyze complex
geosystem and geohazard problems and can be extended to other stability problems in
engineering. It is also worthwhile to mention that the proposed models are based upon
traditional LEMs and are limited by the constraints in their training data. Therefore, future
studies should consider easing the constraints on simple geometries, using inhomogeneous
soil properties, and incorporating pore pressure to make the study more practical. This
concept can be further developed to use remote sensing and geographic information
systems to analyze the stability of slopes in real time.
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